
46 The Delphi Magazine Issue 60

Under Construction:
Pooling And Brokering
by Bob Swart

We’ll complete our MIDAS 3
coverage by considering

Object Pooling (of remote data
modules) and Object Brokering (of
connections), two very interesting
techniques in MIDAS 3. We’ll see
what these concepts mean, how we
can use them, and we’ll implement
a custom Object Broker.

Object Pooling
To avoid possible disappoint-
ments later, I should say that
Object Pooling is a feature which
is only available when using HTTP
connections; that is, using the
TWebConnection component and not
using the normal TDCOMConnection
component, for example, for which
MTS will support just-in-time acti-
vation and deactivation, database
handle pooling and more.

Whenever we design a new
Remote Data Module using the New
Remote Data Module wizard from
the Object Repository, we have the
choice of creating it as a single or
multiple instance object. If we pick
single instance, the remote data
module will be used for a single
client request. Additional client
requests will be served in new
instances of the MIDAS server
executable. This means that, for
every client request, a new
instance of the MIDAS server exe-
cutable is started, where the
remote data module is exclusive
for the client request. If we pick
multiple instance, we only get one
executable but a new instance of
the remote data module for every
client request. Both cases can
result in severe server strain when
hundreds of concurrent connec-
tions are being made (or at least
when the attempt is made to make
hundreds of concurrent connec-
tions). Apart from the memory
usage, you also duplicate database
connections for every instance,
which will slowly bring your server

to its knees. The alternative,
having a single remote data
module and hundreds of client
requests all having to wait in line to
be serviced, might be even worse:
your server will remain up, but
your clients may get the feeling
that you’re letting them down!

Object Pooling gives you the
ability to set a maximum for the
number of instances of the remote
data module inside the MIDAS
server application. Whenever a
client request is received, the
MIDAS server checks to see if a free
remote data module exists in the
pool. If not, it creates a remote data
module instance (but never more
than the specified maximum
number of instances), or raises an
exception with message ‘Server
too busy’. The remote data
module, in turn, services the client
requests and duly waits for the
next one. After a certain period of
time without client requests, the
remote data module is freed auto-
matically by the object pooling
mechanism.

In previous versions of MIDAS
this feature would not have been
possible, since we now have
instances of a remote data module
that service more than one client.
As a result, the server cannot rely
on state information, this has to be
maintained by the client. And, as
you’ve seen in Issue 57, MIDAS 3 is
indeed stateless. As a conse-
quence, you have to use the OnBef-
oreGetRecords events as explained
in Issue 57 to send state informa-
tion back and forth between the
client and the MIDAS server.

The big question should now be:
how do we enable Object Pooling
for HTTP connections? Well, for
the answer we must get inside the
UpdateRegistry method. Using
Delphi 5 (ie MIDAS 3) this method
is automatically created for every
new remote data module, so you

only have to get inside this routine
and add a line to call Register-
Pooled when registering the server
and call UnregisterPooledwhen un-
registering the server. Register-
Pooled takes three arguments. The
first one is easy, that’s the ClassID
which is already passed as an
argument to the UpdateRegistry
method. The second argument
specifies the maximum number of
instances. Obviously, you should
pass a positive value here. If a
client request is received by the
MIDAS server and no remote data
modules are available, then an
exception with message ‘Server
too busy’ is raised. The third argu-
ment specifies the number of min-
utes the remote data module can
wait idle in the pool of remote data
modules. After spending the speci-
fied amount of time without any
client requests, the remote data
module will be freed automatically
by the MIDAS server. According to
the documentation, the MIDAS
server checks every 6 minutes to
see if any remote data module
should be freed. Specifying a time-
out value of 0 means the remote
data module will never timeout, so
in that case the only useful feature
is the limit on the amount of
remote data module instances.

In practice, there’s a fourth argu-
ment you can pass to the
RegisterPooled method: a default
method that specifies whether or
not the remote data module
should be a singleton. The default
is False and results in the situation
I’ve just described. If you set it to
True, the number of instances and
timeout arguments will be ignored
and only a single remote data
module (which must be
free-threaded) will be created to
handle all client requests.

The modified UpdateRegistry for
an example TPoolingMidasServer
remote data module, with up to 10



August 2000 The Delphi Magazine 47

instances that timeout after 42
minutes of inactivity, is shown in
Listing 1.

Note that I’ve hardcoded the
numbers 10 and 42 here. This is not
a good idea in real life, especially
since it means that you need to
recompile the MIDAS server when-
ever you want to make some
changes (for example, if you added
new memory to the server so it can
handle more than 10 instances).
And that’s not even considering
the fact that the same MIDAS
server could be placed on multiple
machines, each with a different
configuration. I always recom-
mend using an external configura-
tion file where you can specify, for
each machine and for every time
you first start the MIDAS server,
the number of instances and time-
out minutes. This adds flexibility to
the power already present in
Object Pooling.

Brokering Connections
Apart from Object Pooling, a tech-
nique to share and reuse remote
data modules among multiple
client requests, there’s also a way
to actually share multiple MIDAS
servers (the applications holding
the remote data module
instances). This is one level higher.
Why is this beneficial? Well, for
example, if you do not have a single
server machine that is able to
handle the strain of all the concur-
rent client connections and you
are forced to balance the load over
more than one machine, each run-
ning a similar MIDAS server.
Another reason is fail-over: if one
server machine goes down, others
will remain, so you won’t go out of
business just because of one fail-
ure. Note that this is different to

letting the end-user know that a
mirror exists, because in that case
the end-user has to move to the
mirror website if the original is
down, whilst connection brok-
ering should automatically con-
nect new requests to a secondary
server if the primary server goes
down. Of course, if someone is
already connected to a server and
the machine goes down, then
that’s the end of that session and
the end-user should start again.

OK, so let’s assume that having
multiple physical server machines
(all running the same MIDAS
server) is a good thing. How would
the client application determine
which MIDAS server to connect to?
The client would need to know
exactly which servers are available
(or he might miss one, maybe the
last one that’s available at that
time). Fortunately, MIDAS 3 offers a
helpful hand in this case with, you
guessed it, Object Brokering.

When using Object Brokering,
the client can make a connection to
a MIDAS server without knowing
which MIDAS server it will end up
with. Apart from the TCorbaConnec-
tion component, which has its own
CORBA-based brokering mecha-
nism, each of the other three con-
nection components in Delphi 5
Enterprise (TDCOMConnection, TSoc-
ketConnection and TWebConnection)
has a property called ObjectBroker.
This property is used to connect to
a component derived from TCus-
tomObjectBroker. This ObjectBroker
component will be responsible for
telling the connection component
which MIDAS server to connect to,
by specifying the ServerName or
ServerGUID information. Note that
when you assign an ObjectBroker
component to the ObjectBroker
property of a connection compo-
nent, you will override the values

of ServerName and ServerGUID that
may have been assigned to this
connection component previously
(because now the ObjectBrokerwill
dynamically provide a ServerName
and ServerGUID for you).

TSimpleObjectBroker
As an example of how to imple-
ment your own Object Brokering
techniques, Delphi 5 Enterprise
comes with a TSimpleObjectBroker
component (already installed and
available on the MIDAS tab of the
Component Palette). This TSimple-
ObjectBroker component has two
interesting properties. The Servers
property should be filled (usually
at design-time) with a list of avail-
able MIDAS servers. For each of
these servers, you need to specify
the ComputerName, the Port (211 by
default) and whether or not the
server is initially enabled. As the
developer, you must make sure
yourself that this list is filled with
initial values and also maintained
properly. When a new server
becomes available you should put
it in the list of available servers.
Note that you do not have to dis-
able servers manually, as the
Object Broker will do that auto-
matically (more on that shortly).

The second important property
of the TSimpleObjectBroker compo-
nent is LoadBalanced. As the name
indicates, when set to True this will
ensure that the servers are load
balanced, or at least that the
requests (for initial connections)
are balanced among the servers.
The technique used here (don’t
laugh) is based on a random
number generator. When Load-
Balanced is set to True, each con-
nection component will be con-
nected to a random server from
the list available in the Servers
property. When LoadBalanced is set
to False each connection compo-
nent on the client application will
be connected to the first server
that’s still available on the servers
list. Note that if you decide to use
the TSimpleObjectBroker, the Load-
Balancedproperty is set to Falseby
default (ie the first MIDAS server
for the list is selected for all con-
nections), perhaps not such a
good value to work with.

class procedure TPoolingMidasServer.UpdateRegistry(Register: Boolean;
const ClassID, ProgID: string);

begin
if Register then begin
inherited UpdateRegistry(Register, ClassID, ProgID);
EnableSocketTransport(ClassID);
EnableWebTransport(ClassID);
RegisterPooled(ClassID,10,42); // max. 10 instances, time-out = 42 minutes

end else begin
UnregisterPooled(ClassID);
DisableSocketTransport(ClassID);
DisableWebTransport(ClassID);
inherited UpdateRegistry(Register, ClassID, ProgID);

end;
end;

➤ Listing 1



48 The Delphi Magazine Issue 60

Note that if you only use one con-
nection component on your
remote data module, then you may
want to make sure that each client
application will indeed select a dif-
ferent MIDAS server from the list of
servers (and not simply the first
one that’s available). And in that
case, using a random MIDAS server
is only effective if the Randomize
function is called, in order to
initialise the random sequence
with a unique starting point. With-
out a call to Randomize, the TSimple-
ObjectBroker would have returned
the same ‘random’ number for the
(only) connection component.

TCustomObjectBroker
If you ever need to write your own
Object Broker algorithm, then
TSimpleObjectBroker might be a
good place to start. However,
although the TSimpleObjectBroker
example provided by Borland
should be the first thing to look at,
you also may want to derive your
own Object Broker implementa-
tion from the TCustomObjectBroker
abstract base class (available in
unit mconnect). This class has four
virtual abstract methods that we
need to override, so let’s start a
new component (File | New, select
the Component icon) and create a
new component called TDMObject-
Broker derived from TCustom-
ObjectBroker. Inside this compo-
nent, we must override and imple-
ment the four methods shown in
Listing 2 (that will be called by the
connection component).

The GetComputerForGUID method
will be called by the connection
component (passing the Server-
GUID value) in order to get the name
of a server (machine) that imple-
ments the given GUID, an interface
that should be implemented by the
MIDAS server that runs on that

machine. The GetComputerFor-
ProgID does the same but, instead
of using a GUID, it will be passed the
actual class name of the server, ie
the ServerName property of the con-
nection component. These two
methods, GetComputerForGUID and
GetComputerForProgID are the meth-
ods that have to implement a
semi-intelligent solution in order
to determine which MIDAS server
(machine) to select.

GetPortForComputer is given the
ComputerName (either the actual
ComputerName or an IP address) as
an argument and expects the Port
as the return value. This can be
considered additional information:
the selection for a MIDAS server
machine has already been made.

Finally, the procedure SetCon-
nectStatus is called by the connec-
tion component to indicate
whether or not a connection to
that particular ComputerName has
been a success. Thus, if the MIDAS
server machine happens to be
down, or temporarily unavailable,
it can be removed from the list of
available servers for a certain time.

Each of these four methods
needs access to a list of MIDAS
servers, and each list item should
at least store the ComputerName, the
Port and whether or not the server
is actually available. You can either
implement this yourself, or take a
look at the implementation of the
TSimpleObjectBroker, which has a
Servers property of type
TServerCollection defined and
implemented in the ObjBrkr.pas
unit. In fact, when you compare the
TCustomObjectBroker abstract base
class, with four virtual abstract
methods, and the TSimpleObject-
Broker example implementations,
the latter has implemented all the
support you need for these four
virtual abstract methods (that will

be called by the connection com-
ponent). So, maybe starting all the
way from scratch by taking
TCustomObjectBroker is only a good
idea if you really want to reinvent
the wheel by yourself. If you want
to reuse as much as possible (the
ServerCollection), then it’s good
to know that the actual server
selection algorithm, which is
based upon a random generator
for the TSimpleObjectBroker, is in
fact implemented by a single func-
tion GetNextComputer from the
TSimpleObjectBroker. The imple-
mentation of this function is
shown in Listing 3.

If you want to implement your
own Object Brokering algorithm
and not reinvent the wheel with
regard to the list of available serv-
ers (the Servers property of the
component), then you quickly get
into some problems. The GetNext-
Computer isn’t a virtual method, so
you cannot override it. And neither
can the GetBalancedName or Get-
NextNamemethods from the Servers
property. This is a bit of a disap-
pointment. Although the TSimple-
ObjectBroker was provided as a
good example of how to implement
a (simple) object brokering exam-
ple, it is not built to be extended.
Rather, I guess, it is made available
to have parts (the Servers prop-
erty and TServerCollection for
example) copied and modified.
And after you’ve copied and
pasted that code inside your own
TDMObjectBroker, then the method
that actually does the ‘smart’ work
of selecting a new MIDAS server
machine is implemented in the
GetBalancedName method of the
ServerCollection.

GetBalancedName
As an alternative algorithm, you
could cycle through the list of
available MIDAS server machines.
This means that the Servers collec-
tion should somehow maintain
state (which of the servers was
being used to connect to last
time?). One place to store this
state and to include some server
specific information is inside the
class TServerItem, derived from
TCollectionItem, that defines the
MIDAS server information in the

function GetComputerForGUID(GUID: TGUID): string;
function GetComputerForProgID(const ProgID): string;
function GetPortForComputer(const ComputerName: string): Integer;
procedure SetConnectStatus(ComputerName: string; Success: Boolean);

➤ Above: Listing 2 ➤ Below: Listing 3

function TSimpleObjectBroker.GetNextComputer: string;
begin
if LoadBalanced then Result := Servers.GetBalancedName
else Result := Servers.GetNextName;

end;



50 The Delphi Magazine Issue 60

list of servers. You could add a
property LastConnectionTimeStamp
to it (of type TDateTime), that con-
tains the Now value at the time of
connection, and hence automati-
cally increases for every new con-
nection is made, or at least
everytime the GetBalancedName
returns with the particular MIDAS
server.

Using this additional informa-
tion, the GetBalancedName routine
should first filter only the (still)
available MIDAS server machines
from the list of servers, and then
sort them by the LastConnection-
TimeStamp property. This should
ensure the distribution is a bit
more fair and balanced, although
perhaps a bit less random.

Note that right before we return
the selected ComputerName, we must
not forget to set the new value of
the LastConnectionTimeStamp. And
also note that if a server hasn’t had
a connection made yet, then its
connection timestamp will be 0,
and hence it will be right up in the
list of potential servers to select.

Even more complex Object Bro-
kering algorithms could contain
more information about each indi-
vidual MIDAS server (machine),
such as the number of connections
(load) this machine is capable of
handling, so a fair distribution
(load balance) is attempted by the
client application. Of course, like I
said before, this is most effective
only when using multiple connec-
tion components inside each
MIDAS client, otherwise we must
use other means to ensure that
each individual client application
will connect to a different server
(and in that case the random
approach, or a combination of the
random approach and the time
stamp approach, will work better).

Reconnection
One final word on Object Bro-
kering: once a connection compo-
nent is connected to a MIDAS
server, it will remain connected to
that particular server until the Con-
nected property is set to False
again. When the connection com-
ponent has made a connection
with the MIDAS server that has
been selected by the Object Broker

component, it saves the relevant
values of the connecting proper-
ties like ComputerName, Address and
URL. If the connection component
closes and later reopens the con-
nection, it first tries to use these
property values to reconnect and
only requests a new server from
the Object Broker if the connection
fails (ie when the first MIDAS
server seems to be unavailable).

This also opens up a great way
for connection error recovery: if
the client ever gets an error (RPC
server unavailable for example),
then simply toggling the Connected
property from the connection com-
ponent will disconnect from the
remote MIDAS server (which might
be down or unavailable) and con-
nect to another MIDAS server (pro-
vided at least one is still up). This is
a great way to provide recovery of
client activities! Of course, all ses-
sion information might be lost, but
at least the client can restart and
continue to work even if one or
more servers are going down.

Summary
We’ve seen that Object Pooling can
be used to share and re-use remote
data modules within MIDAS
servers, whereas Object Brokering
can be used to distribute MIDAS
servers among multiple machines.
Both techniques will help you to

increase the potential of your
MIDAS server application. Object
Pooling is a matter of configura-
tion, where you might want to
store the max number of instances
and timeout values in an external
configuration file (so the MIDAS
server application can be the same
for many machines and only the
configuration file contains the spe-
cific details for that machine).
Object Brokering, on the other
hand, can be much more involved,
and may require you to implement
a specific brokering algorithm for
the application at hand. Com-
bined, they extend the reach of
MIDAS servers tremendously.

Next Time
Next month we’ll examine strings.
From the old short strings to long
strings, AnsiStrings, WideStrings,
WideChars, PChars, conversion
routines, efficiency and more. And
believe me, even if you think you
know strings, you’ll really get to
know strings the hard way. Espe-
cially with Delphi 5. So stay tuned...

Bob Swart (aka Dr.Bob, www.
drbob42.com) is an @-Consultant
for TAS Advanced Technologies
and a freelance technical author.

function TServerCollection.GetBalancedName: string;
var
OldestTimeStamp: TDateTime;
OldestServer, GoodCount, i: Integer;
GoodServers: array of TServerItem;

begin
GoodCount := 0;
OldestTimeStamp := Now;
OldestServer := 0;
SetLength(GoodServers, Count);
for i:=0 to Pred(Count) do begin
if (not Items[i].HasFailed) and (Items[i].Enabled) then begin
GoodServers[GoodCount] := Items[i];
if GoodServers[GoodCount].LastConnectionTimeStamp < OldestTimeStamp
then begin
OldestServer := GoodCount;
OldestTimeStamp := GoodServers[GoodCount].LastConnectionTimeStamp

end;
Inc(GoodCount)

end
end;
if GoodCount = 0 then
raise EBrokerException.CreateRes(@SNoServers);

GoodServers[OldestServer].LastConnectionTimeStamp := Now;
Result := GoodServers[OldestServer].ComputerName;

end;

➤ Listing 4


	Object Pooling
	Brokering Connections
	TSimpleObjectBroker
	TCustomObjectBroker
	GetBalancedName
	Reconnection
	Summary
	Next Time

